翻訳と辞書
Words near each other
・ Van Wert County, Ohio
・ Van Wert High School
・ Van Wert, Georgia
・ Van Wert, Iowa
・ Van Wert, Ohio
・ Van Wesenbekestraat
・ Van Westendorp's Price Sensitivity Meter
・ Van Wetten v Bosch
・ Van Wezel Performing Arts Hall
・ Van Wickle Gates
・ Van Wickle House
・ Van Wieren
・ Van Wijk
・ Van Wijk (crater)
・ Van Wijngaarden grammar
Van Wijngaarden transformation
・ Van Wijngen International
・ Van Wilder
・ Van Williams
・ Van Williams (American football)
・ Van Williams (musician)
・ Van Winitsky
・ Van Winkle
・ Van Winkle House
・ Van Winkle House (Franklin Lakes, New Jersey)
・ Van Winkle's Correlation
・ Van Winkle's Mill Site
・ Van Winkle-Fox House
・ Van Woert's Regiment of Militia
・ Van Wolverton


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Van Wijngaarden transformation : ウィキペディア英語版
Van Wijngaarden transformation
In mathematics and numerical analysis, in order to accelerate convergence of an alternating series, Euler's transform can be computed as follows.
Compute a row of partial sums :
:s_ = \sum_^k(-1)^n a_n
and form rows of averages between neighbors,
: \, s_ = \frac}2
The first column \scriptstyle s_ then contains the partial sums of the Euler transform.
Adriaan van Wijngaarden's contribution was to point out that it is better not to carry this procedure through to the very end, but to stop two-thirds of the way.〔A. van Wijngaarden, in: Cursus: Wetenschappelijk Rekenen B, Proces Analyse, Stichting Mathematisch Centrum, (Amsterdam, 1965) pp. 51-60〕 If \scriptstyle a_0,a_1, \ldots, a_ are available, then \scriptstyle s_ is almost always a better approximation to the sum than \scriptstyle s\, _.
Leibniz formula for pi, \scriptstyle 1 - \frac 1 3 + \frac 1 5 - \frac 1 7 + \cdots = \frac \pi 4 = 0.7853981\ldots , gives the partial sum \scriptstyle \,s_ = 0.8046006... (+2.4\%), the Euler transform partial sum \scriptstyle \,s_ = 0.7854002... (+2.6 \times 10^) and the van Wijngaarden result \scriptstyle \,s_ = 0.7853982... (+4.7 \times 10^) (relative errors are in round brackets).

1.00000000 0.66666667 0.86666667 0.72380952 0.83492063 0.74401154 0.82093462 0.75426795 0.81309148 0.76045990 0.80807895 0.76460069 0.80460069
0.83333333 0.76666667 0.79523810 0.77936508 0.78946609 0.78247308 0.78760129 0.78367972 0.78677569 0.78426943 0.78633982 0.78460069
0.80000000 0.78095238 0.78730159 0.78441558 0.78596959 0.78503719 0.78564050 0.78522771 0.78552256 0.78530463 0.78547026
0.79047619 0.78412698 0.78585859 0.78519259 0.78550339 0.78533884 0.78543410 0.78537513 0.78541359 0.78538744
0.78730159 0.78499278 0.78552559 0.78534799 0.78542111 0.78538647 0.78540462 0.78539436 0.78540052
0.78614719 0.78525919 0.78543679 0.78538455 0.78540379 0.78539555 0.78539949 0.78539744
0.78570319 0.78534799 0.78541067 0.78539417 0.78539967 0.78539752 0.78539847
0.78552559 0.78537933 0.78540242 0.78539692 0.78539860 0.78539799
0.78545246 0.78539087 0.78539967 0.78539776 0.78539829
0.78542166 0.78539527 0.78539871 0.78539803
0.78540847 0.78539699 0.78539837
0.78540273 0.78539768
0.78540021
This table results from the J formula 'b11.8'8!:2-:&(}:+}.)^:n+/\(_1^n)
*%1+2
*n=.i.13

In many cases the diagonal terms do not converge in one cycle so process of averaging is to be repeated with diagonal terms by bringing them in a row. This will be needed in an geometric series with ratio -4. This process of successive averaging of the average of partial sum can be replaced by using formula to calculate the diagonal term.
== References ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Van Wijngaarden transformation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.